The Nramp2/DMT1 iron transporter is induced in the duodenum of microcytic anemia mk mice but is not properly targeted to the intestinal brush border.

نویسندگان

  • F Canonne-Hergaux
  • M D Fleming
  • J E Levy
  • S Gauthier
  • T Ralph
  • V Picard
  • N C Andrews
  • P Gros
چکیده

Microcytic anemia (mk) mice and Belgrade (b) rats are severely iron deficient because of impaired intestinal iron absorption and defective iron metabolism in peripheral tissues. Both animals carry a glycine to arginine substitution at position 185 in the iron transporter known as Nramp2/DMT1 (divalent metal transporter 1). DMT1 messenger RNA (mRNA) and protein expression has been examined in the gastrointestinal tract of mk mice. Northern blot analysis indicates that, by comparison to mk/+ heterozygotes, mk/mk homozygotes show a dramatic increase in the level of DMT1 mRNA in the duodenum. This increase in RNA expression is paralleled by a concomitant increase of the 100-kd DMT1 isoform I protein expression in the duodenum. Immunohistochemical analyses show that, as for normal mice on a low-iron diet, DMT1 expression in enterocytes of mk/mk mice is restricted to the duodenum. However, and in contrast to normal enterocytes, little if any expression of DMT1 is seen at the apical membrane in mk/mk mice. These results suggest that the G185R mutation, which was shown to impair the transport properties of DMT1, also affects the membrane targeting of the protein in mk/mk enterocytes. This loss of function of DMT1 is paralleled by a dramatic increase in expression of the defective protein in mk/mk mice. This is consistent with a feedback regulation of DMT1 expression by iron stores. (Blood. 2000;96:3964-3970)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders.

Iron overload is highly prevalent, but its molecular pathogenesis is poorly understood. Recently, DMT1 was shown to be a major apical iron transporter in absorptive cells of the duodenum. In vivo, it is the only transporter known to be important for the uptake of dietary non-heme iron from the gut lumen. The expression and subcellular localization of DMT1 protein in 3 mouse models of iron overl...

متن کامل

Molecular and cellular mechanisms underlying iron transport deficiency in microcytic anemia.

A mutation of the iron transporter Nramp2 (DMT1, Slc11a2) causes microcytic anemia in mk mice and in Belgrade rats by impairing iron absorption in the duodenum and in erythroid cells, causing severe iron deficiency. Both mk and Belgrade animals display a glycine-to-arginine substitution at position 185 (G185R) in the fourth predicted transmembrane domain of Nramp2. To study the molecular basis ...

متن کامل

A Spontaneous, Recurrent Mutation in Divalent Metal Transporter-1 Exposes a Calcium Entry Pathway

Divalent metal transporter-1 (DMT1/DCT1/Nramp2) is the major Fe(2+) transporter mediating cellular iron uptake in mammals. Phenotypic analyses of animals with spontaneous mutations in DMT1 indicate that it functions at two distinct sites, transporting dietary iron across the apical membrane of intestinal absorptive cells, and transporting endosomal iron released from transferrin into the cytopl...

متن کامل

RED CELLS Molecular and cellular mechanisms underlying iron transport deficiency in microcytic anemia

A mutation of the iron transporter Nramp2 (DMT1, Slc11a2) causes microcytic anemia in mk mice and in Belgrade rats by impairing iron absorption in the duodenum and in erythroid cells, causing severe iron deficiency. Both mk and Belgrade animals display a glycine-toarginine substitution at position 185 (G185R) in the fourth predicted transmembrane domain of Nramp2. To study the molecular basis f...

متن کامل

Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron.

Genetic studies in animal models of microcytic anemia and biochemical studies of transport have implicated the Nramp2 gene in iron transport. Nramp2 generates two alternatively spliced mRNAs that differ at their 3' untranslated region by the presence or absence of an iron-response element (IRE) and that encode two proteins with distinct carboxy termini. Antisera raised against Nramp2 fusion pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 96 12  شماره 

صفحات  -

تاریخ انتشار 2000